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Introduction

The advent of Density Functional Theory (DFT) [1-
6] has brought a renewed interest in molecular electron 
densities and the associated “population” degrees of 
freedom as primary descriptors of the mechanism and 
progress of elementary chemical reactions [7-16]. This 
also covers the probabilistic models of the chemical bond 
in Information Theory (IT) [16,17] in all resolution levels 
of electronic distributions, from the local description 
of densities themselves to intermediate descriptions of 
the overall electron numbers in molecular substrates, 
their active sites or constituent atoms. For example, such 
“condensed” descriptions may involve occupation numbers 
of the con iguration Molecular Orbitals (MO) or probability 
data regarding the adopted de inition of bonded Atoms-
in-Molecules (AIM) or speci ic basis set of Atomic Orbitals 
(AO) used in molecular calculations. 

The most condensed level, of a global description 
in terms of the average electron numbers on reactants, 
requires an identi ication of the in situ reactivity criteria 
for an (isoelectronic) charge-transfer (CT) phenomena 
in the externally-closed reactive system as a whole 
[9,11,12,16-18], e.g., in the acid (A, acceptor)  base (B, 
donor) (AB) complexes. A determination of the optimum 
amount of such “concerted” displacements in overall 
electron populations and the subsequent equilibrium 
responses of reactants, involves the reaction chemical 
potential (gradient) and hardness (Hessian) descriptors. 
Their known inite-difference estimates, used in qualitative 
considerations, e.g., [4,9-13,19], ultimately refer to the 
substrate ionization-potential (Iα) and electron-af inity (Aα) 
properties. In this work, we reexamine de initions of the 
proper CT descriptors of the closed and open reactants, all 
of which can be determined from the canonical data on the 
system constituent AIM [9,10]. 
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The population reference systems of the substrates 
have to be mutually oriented in an AIM-resolved reaction 
mechanism. In the Intersecting-State Model (ISM) [10-12] 
this has been accomplished by requiring collinearity of 
the reactant internal Fukui Functions (FF), each re lecting 
the populational “trajectory” of the most ef icient mode of 
an electron “in low” or “out low” to/from the molecular 
fragment in question. The ISM perspective has also 
anticipated a lowering of the process activation energy 
upon an external “opening” of the reactive system in contact 
with an electron reservoir, e.g., the (macroscopic) catalytic 
surface. In the present analysis, we shall summarize 
these conjectures and brie ly explore the possibility of 
supramolecular assemblies of the bonded AB monomers. 

Charge-transfer in reactant resolution

Let us brie ly reexamine the populational derivatives 
characterizing a general CT reactive system R ≡ AB. We 
aim to describe the internal (isoelectronic) transfer of the 
equilibrium amount of NCT electrons between the initially 
closed reactants in the nonequilibrium (nonbonded) 
complex R+ = (A+|B+), from the polarized “donor” reactant 
B+ to its “acceptor” partner A+, 

dNA = −dNB = NCT > 0 or dNR ≡ dNA + dNB = 0,             (1)

for the ixed molecular external potential v(r) = vA(r) + vB(r), 

corresponding to the “frozen” geometry of R as a whole. 
The optimum CT low ultimately produces the equilibrium 
(bonded) complex R* = (A*¦B*) (Figure 1). The vertical solid 
and broken lines in R+ and R*, respectively, symbolize the 
“barrier” and “freedom” to exchange electrons between 
the externally-closed reactants [9-12]. For simplicity, we 

further assume that internal geometries of the isolated 
reactants A0 and B0 are held frozen in the reaction complex, 
so that there exists a unique “molecular” reference R0 ≡ 
(A0|B0), consisting of the free reactants shifted to their 
current mutual orientation and separation in R. Again, the 
vertical solid line separating the nonbonded fragments 
of R0 implies that they both conserve their initial electron 
numbers, when polarized by a presence of the other 
subsystem: Nα

0 = Nα
+, α = A, B. 

Such an internal transfer of NCT electrons in R*, between 
the already polarized reactants of R+ ≡ (A+|B+), thus 
conserves the complex overall number of electrons: NA + NB 
≡ NR. The equilibrium electron populations on subsystems, 

N* = (NA
*, NB

*), which directly result from integrations of the 
associated fragment densities ρ* = (ρA

*, ρB
*), 

Nα
* = ∫ρα

*(r) dr, α = A, B;

N* ≡ N0 + ∆N*(NCT) = (NA
* = NA

0 + NCT, NB
* = NB

0 − NCT),  
                   (2)

Figure 1: The internal CT process in a reactive system R = AB combines the 
acceptor (acid, A) and donor (base, B) substrates. Panel a: chemical potential 
discontinuity and the system CT activation; Panel b: displacements in subsystem 
populations and normal modes for charge reorganizations in the open system; 
Panel c: energy profi le for the bond-formation reaction along the isoelectronic 
(N-restricted) CT process (A+|B+)  (A*|B*)  (A*¦B*); Panel d: juxtaposed energy 
plots for the “basis-activation” and “acid-stabilization” along the progress variable y 
measuring the current amount of BA CT; Panel e: transition-state analysis of the 
Hard (H) and Soft (S) acids and bases.
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Ultimately determine the optimum amount of the B→A 
CT: 

NCT = NA
* − NA

0 = NB
0 − NB

* > 0 or ∆N*(NCT) = NCT (1, −1).  
                  (3)

Here, the row vector N0 = (NA
0, NB

0) groups the electron 
populations of the reference (free or polarized) reactants in 
non-bonded complexes R0 or R+. 

The equilibrium densities ρ+(NR
+) and energies E+(NR

+) 
of the externally open but mutually closed reactants in the 
composite macroscopic system involving separate electron 

reservoirs for each substrate, M+ ≡ (RA¦A+|B+¦RB), thus 
depend on their current (average) electron populations 

NR
+ = {Nα

+} (“row” vector), giving rise to overall (average) 

electron number in R+ as a whole: NR
+ = ∑α Nα

+. These 
functions ultimately determine charge sensitivities of the 
“embedded”, polarized reactants {α+}, including the (row 
vector) of the chemical potentials in polarized subsystems, 

μR
+ = ∂E+(NR

+)/∂NR
+ = {μα = ∂E+(NR

+)/∂Nα
+},              (4)

and the hardness matrix in this reactant resolution: 

ηR
+ = ∂2E+(NR

+)/∂NR
+

 ∂NR
+ = {ηα,β = ∂2E+(NR

+)/∂Nα
+

 ∂Nβ
+ = 

∂μβ
+/∂Nα

+}.                   (5)

In this “condensed” resolution the overall fragment 
populations NR = (NA, NB) = {Nα} represent the system 

independent electronic-structure variables, which 

determine the populational derivatives of reactants: their 
chemical potentials μR = ∂ER(NR)/∂NR = {μα} and hardness 
matrix ηR = ∂2ER(NR)/∂NR ∂NR = ∂μR/∂NR = {ηα,β}. The 
fragment populations combine into the normal coordinates 
describing R as a whole: polarization, P = NA − NB, and CT, 
Q = NA + NB ≡ NR. In such a collective representation the 
system internal (isoelectronic) CT is thus directed along 
the polarization coordinate P, by the population shift NCT 
= (NCT, −NCT) of the “closed-to-open” transition R+

 ≡ (A+|B+) 

→ R*
 ≡ (A*¦B*), which corresponds to the vanishing 

external-CT displacement: dQ = 0. This CT process results 
in stabilization energy ∆E(NCT) ≡ ECT < 0 and requires the 
population-activation of the mutually-closed (equilibrium) 
subsystems: ∆E(Aa|Ba) ≡ Ea = E(A*|B*) − E(A+|B+) = μCT

(+)
 

NCT
* > 0. In Panel C the reaction energy pro ile along the 

CT coordinate x consists of the “basis-activation” curve, 
EB

R(x) = − μB x + ½ηB
R x2, for 0 ≤ x ≤ NCT, followed by the “acid-

stabilization” function, EA
R(x) = μA x + ½ηA

R x2, for NCT ≤ x ≤ 
2NCT, with a common value EA

R(x‡)   EB
R(x‡) ≡ Ea = E(A*|B*) 

in the transition-state (TS) at x‡ = NCT. These two energy 
segments are juxtaposed in Panel d as functions of the CT-
progress variable y ∈ [0, NCT]. Their intersection determines 
the representative amount of CT “activation”, 0 ≤ y‡ ≡ NCT

 ≤ 
NCT, and the associated energy: Ea = EA

R(y‡) = EB
R(y‡).

These condensed descriptors de ine the associated 
second-order expansion of electronic energy in terms 
of powers of displacements in overall populations on 
subsystems,

∆E+(∆NR
+) = ∆NR

+ (∂E+/∂NR
+) + ½ ∆NR

+
 [∂2E+/∂NR

+ ∂NR
+] 

∆NR
+,T

 = ∆NR
+

 μR
+,T + ½ ∆NR

+
 ηR

+
 ∆NR

+,T.                 (6)

In the ixed (molecular) external potential v(r) of 
the Born-Oppenheimer (BO) approximation, for the 

equilibrium amount NCT of CT in R*(NCT), NR(NCT) = 
{Nα

*(NCT)}, a similar population-dependence characterizes 
the electron densities and energy of the mutually-open 
(bonded) reactants, in the composite macroscopic system 
involving a common electron reservoir for both substrates, 
M* ≡ (R¦A*¦B*) = (R¦R*),

ρ*[NR(NCT); v] = ρR(NCT), E*[NR(NCT); v] = ER[NR(NCT)] ≡ 

E(NCT).                   (7)

The equilibrium amount of CT thus represents the 
reaction coordinate, a progress variable in such internal 
displacements of the system's electronic structure. The 
associated in situ descriptors then involve differentiations 
concerning this amount of B→A CT [9-12,16-18]. The 
closure relation of Eq. (1) implies the following populational 
derivatives of reactants along this internal CT coordinate, 
generating the row-vector of their FF indices 

FR
CT = ∂NR/∂NCT = (FA

CT, FB
CT), ∑α Fα

CT = 0;

FA
CT = ∂NA

+(NCT)/∂NCT = 1 and FB
CT = ∂NB

+(NCT)/∂NCT = −1.  

                  (8)

These “condensed” subsystem indices enter as 
“weighting” factors into the chain-rule expressions for 
the relevant in situ CT descriptors. For example, the CT 
chemical-potential displacement, the energy-conjugate of 
NCT,

μR
CT = ∂E(NCT)/∂NCT = ∑α (∂Nα

+/∂NCT) (∂E+/∂Nα
+) 

= ∑α Fα
CT

 μα = FR
CT

 μR
+,T

 = FA
CT

 [∂E+(NR)/∂NA] + FB
CT

 [∂E+(NR)/∂NB] = μA − μB,  
                   (9)

measures the initial difference of chemical potentials in the 
“embedded” (polarized) subsystems of R+ and represents 
the driving force for the subsequent bond-formation 
process. The associated CT-hardness measure similarly 
reads:

ηR
CT = ∂2E(NCT)/( NCT)2 = ∑α ∑β (∂Nα

+/ NCT) (∂2E+/∂Nα
+

 ∂Nβ
+) 

(∂Nβ
+/ NCT) 
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 = ∑α ∑β Fα
CT

 ηα,β F 
CT = FR

CT
 ηR

+
 FR

CT,T 

 = (ηA,A − ηA,B) + (ηB,B − ηB,A) ≡ ηA
R + ηB

R.             (10)

Here, ηα
R denotes the effective hardness of the 

“embedded” fragment α+ in R+. Thus, at inite separations, the 
hardness descriptors of chemically interacting reactants, 
re lecting the presence of complementary subsystem β≠α 
(a inite electron “reservoir”), which effectively softens the 
fragment α, are modi ied by a inite off-diagonal hardness 

ηβ,α = ∂2E+(NR
+)/∂Nβ

+
 ∂Nα

+ = ∂μα
+(NR

+)/∂Nβ
+. 

The in situ CT-softness descriptor is then accordingly 
de ined as the inverse of the above global CT-hardness 
index: 

SR
CT = ∂NCT/∂μCT = ∂NA

CT/∂μCT = −  NB
CT/∂μR

CT = 1/ηR
CT.  

                   (11) 

These combined descriptors ultimately determine the 
associated 2nd-order change in electronic energy, ∆E(NCT), 
due to the internal displacement in the Donor-Acceptor 
(DA) reactive system R = AB,

∆E(NCT) = μR
CT

 NCT + ½ ηR
CT(NCT)2 

 = [μA NCT + ½ηA
R

 (NCT)2] + [−μB NCT + ½ηB
R

 (NCT)2] ≡ ∑α 

∆Eα(NCT),                   (12)

the sum of reactant contributions {∆Eα(NCT)}.

The equilibrium condition, of the vanishing CT gradient 
of electronic energy at R*, 

∂E(NCT)/∂NCT|* = μR
CT(NCT

*) ≡ μA(NCT
*) − μB(NCT

*) =  R
CT +ηR

CT
 

NCT
* = 0,                                (13)

then yields the optimum amount NCT
* of CT (Figure 1a), 

NCT
* = −μR

CT/ηR
CT > 0,           (14a) 

∆E(NCT
*) ≡ ECT(NCT

*) − ECT(NCT = 0) = − ½ (μR
CT)2/ηR

CT ≡ 

ECT,              (14b)

for which the chemical potentials of both reactants equalize 
at the molecular level

μR = ∑α (∂ER/∂Nα) (∂Nα/∂NR) ≡ ∑α μα f  = μA (ηB
R/ηCT) + μB 

(ηA
R/ηCT) 

 = μA
* = μA + ηA

R
 NCT

* ≡ μA(NCT
*) 

 = μB
* = μB − ηB

R
 NCT

* ≡ μB(NCT
*).               (15)

The CT activation energy Ea of Figure 1a is determined 
by the equilibrium population shifts in the mutually closed, 
population-activated reactants {αa} in contact with their 

respective reservoirs: NA
* = NA

0 + NCT
* and NB

* = NB
0 − NCT

*. 

These displacements are effected by appropriate exchanges 
with the separate (macroscopic) reservoirs of subsystems 
in the composite polarized system M+ ≡ (RA¦A+|B+¦RB): 

Ea = E(A*|B*) − E(A+|B+) ≡ ∆E(Aa|Ba).                             (16)

Summing the energy changes of such populationally-
activated subsystems in the B→A CT then gives:

Ea = ∆E(Aa) + ∆E(Ba) = [μA
+ NCT

* + μB
+ ( NCT

*)] 

 = (IB − AA) NCT
* ≡ μCT

(+) NCT
* > 0,               (17) 

where Aα and Iα stand for the electron af inity and ionization 
potential of reactant α, respectively, while

μCT
(+)

 = IB − AA = μCT(B→A) > 0                           (18)

denotes the biased chemical-potential difference [16] for 

the “positive” B→A CT in Figure 1a. It should be recalled, 
that the chemical potential μ  in Eq. (9) represents the 
unbiased descriptor of chemical species, when we have no 
information about its action in the reactive complex. 

In Mulliken’s (M) interpolation [19] it is expressed 
by the arithmetic average of the system acidic (anionic, 
acceptor),  α

(−) = −Iα, and basic (cationic, donor), μα
(+) = −Aα, 

measures, 

μ 
(M)= ½ [μα

(−) + μα
(+)] = − ½ (Iα + A ).                           (19) 

Therefore, in this inite-difference estimate (Figure 1a)

μCT
(M) = μA

(M)
 − μB

(M) = ½ [μCT
(+) − μCT

(−)],                           (20)

where the biased chemical-potential difference for the 
(“negative”) A→B CT in Figure 1a 

μCT
(−) = IA − AB

 ≡ μCT(A→B) > 0.                            (21)

The biased measures re lect the (macroscopic) chemical-
potential discontinuity [20].

The “weighting” factors of the substrate chemical 
potentials μR

+ = {μα} in the combination-rule of Eq. (15) 
represent the external FF indices in R,

fR = {fA = ∂NA/∂NR = ηB
R/ηCT, fB =  NB/∂NR = ηA

R/ηCT},               
                (22) 

measuring responses in populations of complementary 
subsystems to an in low (dN = dNR > 0) or out low (dN = 
−dNR < 0) of electrons to/from the equilibrium complex 
R* = (A*¦B*). The global hardness of R* as a whole, ηR = 
∂2ER(NR)/∂NR

2, similarly re lects the external NR-derivative 
of the system resultant chemical potential,

ηR = ∂μR/∂NR = ∑β ∑α (∂Nβ/∂NR) (∂μα/∂Nβ) fα = ∑β ∑α fβ 

ηβ,α fα 
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 = (ηA,AηB,B − ηA,BηB,A)/ηR
CT ≡ D(ηR

+)/ηR
CT,                          (23) 

where D(ηR
+) stands for the determinant of the hardness 

matrix ηR
+. The inverse of this population-Hessian measures 

the global softness of R*: 

 SR
 = ∂NR/∂μR = ηR

CT/D(ηR
+).               (24)

Let us now examine in more detail the alternative 
indices of the relative-softness (FF) quantities in the DA 
reactive complex R = AB. One observes that derivatives of 
Eq. (8) represent the overall FF indices of reactants for an 
isoelectronic (internal) CT, in an externally-closed R. This 
conservation of the overall number of electrons is indeed 
re lected by their vanishing sum: 

FA
CT + FB

CT = (∂NR/∂NCT)N = 0.                (25)

The “condensed” descriptors of reactants result from 
an integration of the associated “local” FF in substrate 
resolution, fCT(r) = {fα

CT(r) = ∂Nα/∂NCT}, 

∫fA
CT(r) dr = ∂NA/∂NCT = FA

CT, ∫fB
CT(r) dr = ∂NB/∂NCT = FB

CT. 

The latter also follow the appropriate chain rules:

fA
CT(r) = ∂ρA(r)/∂NCT = ∑α [∂ρA(r)/∂Nα] Fα

CT 

 = ∂ρA(r)/∂NA − ∂ρA(r)/∂NB ≡ fA,A(r) − fB,A(r),              (26)

fB
CT(r) = ∂ρB(r)/∂NCT = ∑α [∂ρB(r)/∂Nα] Fα

CT 

 = ∂ρB(r)/∂NA − ∂ρB(r)/∂NB ≡ fA,B(r) − fB,B(r).             (27) 

These local responses on reactants give rise to the 
overall in situ FF of R as a whole:

fR
CT(r) = ∂ρR(r)/∂NCT = ∂ρA(r)/∂NCT + ∂ρB(r)/∂NCT = 

fA
CT(r) + fB

CT(r),

 ∫fR
CT(r) dr = FA

CT + FB
CT = 0.                (28)

To conclude this section, let us brie ly summarize the 
softness and FF indices of the (nonbonded) composite 
reactive system R+ = (A+|B+), expressed in terms of elements 
in ηR

+. The inverse of the “condensed” hardness matrix, ηR
+ 

= {ηα,β}, α, β ∈ (A, B), which determines the determinant 

D(ηR
+) = ηA,AηB,B − ηA,BηB,A ≡ D, ultimately de ines the softness 

matrix 

σR
+ = ∂NR

+/∂μR
+ = (ηR

+)−1 = {Sα,β},    
     

SA,A = ηB,B/D SA,B = −ηB,A/D

SB,A = −ηA,B/D SB,B = ηA,A/D  ,               (29)

grouping the chemical potential derivatives of the grand-
potential 

Ω+(μR
+) = E+(NR) − μR

+NR.     
     

It further generates the associated fragment and global 
response descriptors. For example, the softnesses of the 
bonded (embedded) subsystems in R* = (A*¦B*), 

SA
R = (ηB,B −ηA,B)/D ≡ ηB

R/D, SB
R = (ηA,A −ηA,B)/D ≡ ηA

R/D,  

                   (30)

generate the additive contributions to the global softness SR 
of the whole R, the inverse of the global hardness ηR,

SR = SA
R + SB

R = (ηA
R + ηB

R)/D = ηR
CT/D = ηR

−1,              (31)

and the condensed FF indices of reactants:

fA
R = ∂NA/∂N = SA

R/SR = ηB
R/ηR

CT 

and fB
R = ∂NB/∂N = SB

R/SR = ηA
R/ηR

CT.             (32)

Therefore, the resultant hardness of R as a whole can be 
directly expressed in terms of elements of the condensed 
hardness matrix in reactant resolution: 

ηR = 1/SR = D/ηR
CT = (ηA,AηB,B − ηA,BηB,A)/(ηA,A + ηB,B − 2ηA,B).  

                 (33)

The fractional populations of subsystems, and the 
average numbers of electrons on molecular fragments, 
require an ensemble description [21]. Indeed, the external 
in low or out low of electrons must involve a macroscopic 
electron reservoir, while in the internal exchanges in R one 
substrate acts as a microscopic “reservoir” to its reaction 
partner [16]. Contrary to the external discontinuity of the 
chemical potential in a molecular reactive system coupled 
to the external reservoir (Figure 1a) [20], the in situ 
electronegativity difference, which drives electron lows 
between the microscopic (externally closed) reactants, 
represents the continuous function of the fractional amount 
of CT: ER = E(NCT) [16]. This validates Mulliken’s [19] 
parabolic interpolation and con irms it as a genuine energy 
function in an internal ensemble description.

In the ensemble approach to R+ one refers to the externally 
open but mutually closed (chemically nonbonded) reactants 
in the composite macroscopic system M+ ≡ (RA¦A+|B+¦RB) 
involving separate electron reservoirs for each polarized 
substrate. The equilibrium shifts in subsystem populations, 
∆NR

+ = { Nα}, then respond to displacements in the reservoir 
chemical potentials ∆μR

+ ={∆μα}: 

∆NR
+

 = ∆μR
+ σR

+ or  μR
+ = ∆NR

+
 ηR

+.               (34)

The hardness (ηR
+) and softness (σR

+) matrices thus relate 

the equilibrium “displacements” in the reservoir chemical 
potentials, equal to the corresponding descriptors of 
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reactants, with the conjugate “responses” in fragment 
electron populations.

The DA system R(x) = AR(x)  BR(x), where x measures 
the current amount of the B→A CT, can be also viewed as 
a prototype of the bond-formation reaction between the 
initially non-bonded (polarized) reactants (Figure 1c): 

(A+|B+) → (A*|B*) → (A*¦B*).               (35)

The energy pro ile of this CT reaction is then derived 
from the resultant expression for the energy [see Eqs. (12) 
and (14b)]:

∆E(x) = μR
CT

 x + ½ ηR
CTx2 = (μA x + ½ηA

R
 x

2) + (−μB x + ½ηB
R

 

x2) ≡ EA
R(x) + EB

R(x) 

= [(μA x + ½ηA,A x
2) + (−μB x + ½ηB,B x

2)] − 2ηA,B x
2 ≡ [EA(x) + 

EB(x)] + EAB(x).                 (36)

It is seen to combine contributions due to the embedded 
reactants in R: the “base-activation” curve EB

R(x) and the 
“acid-stabilization” function EA

R(x), with the “transition 
state” (TS) complex R‡ = (A*|B*) for x‡ = NCT composed 
of the closed (nonbonded) equilibrium reactants {α*}, 
simultaneously population-activated. Sitting next to the 
zero-energy at the initial polarized complex for x = 0, 
E(A+|B+) ≡ 0, then identi ies the reaction energy as that 
corresponding to the bonded, mutually-open reactants 
(Figure 1a): 

Er = E(A*¦B*) = ECT.                 (37)

For a inite x, the in situ energy of CT complex has been 
alternatively partitioned in Eq. (36) into the uncoupled-
reactant contributions {Eα(x) > 0} describing the {α+→α(x)} 
transitions, and the interaction energy: 

EAB(x) = − 2ηA,B x
2 < 0.                 (38)

The latter stabilizes the reactive complex since the 

coupling hardness re lects the Coulomb repulsion between 
electrons on both fragments: ηA,B ≈ γA,B > 0. 

The typical energy pro ile for this bond-formation 
process (Figure 1c) can be viewed as consisting of the 

base-activation segment EB
R(x), for 0 ≤ x ≤ NCT, and the 

acid-stabilization part EA
R(x), for NCT ≤ x ≤ 2NCT, with the 

activation energy at the intersection point x‡ = NCT:

EA
R(x‡) = EB

R(x‡) ≡ Ea > 0.             (39)

Alternatively, these two segments can be juxtaposed 
along a common CT-progress variable y ∈ (0, NCT) measuring 
the current amount of the B→A CT (Figure 1d) [10-12]. The 
intersection y‡ of the energy plots EB

R(y) and EA
R(y), 

EA
R(y‡) = EB

R(y‡) ≡ Ea,               (40)

then determines yet another representative position y‡ 

≡ NCT and activation energy Ea for the isoelectronic CT in 
AB systems. This representation facilitates a discussion 
of “dynamical” aspects of the Hard(H)−Soft(S) Acids(A) 
and Bases(B) (HSAB) principle of chemistry (Figure 1e) 
[7,10-12,22-26]. One recalls, that the opposite-hardness 
combinations H−S and S−H have been identi ied as 
producing relatively unstable complexes, with the 
comparable-hardness compounds H−H and S−S acquiring 
their relative stability due to stronger inter-substrate 
chemical bonds: covalent in S−S complex [7] and ionic 
in H−H compound [23]. Indeed, the largest values of CT-
amount should characterize the covalent, S-S structure, the 
mixed-hardness species are predicted to exhibit moderate 
values of NCT, while its lowest value can be expected in 
the ionic, H-H structures. A reference to Figure 1e shows 
that all these hardness combinations generate a cluster of 
similar energies {Ea} and corresponding CT measures {NCT}, 
predicting an “early” position of a “low” activation barrier. 
Speci ic orderings in these predictions should depend 
strongly on the actual combinations of reactant harnesses 
(compare [10,11,12]). 

Atomic resolution of electronic reorganizations and in-
tersecting-state model

For some interpretations in chemistry the preceding 
“condensed” perspective, in which reactants are viewed as 
whole units, may require a more detailed resolution, e.g., in 
terms of the (bonded) constituent AIM, the system occupied 
MO or the AO basis functions of molecular calculations. 

Consider the illustrative case of atomic approach to the 

DA reactive system R, with the row vectors NA = {Na} and NB 

= {Nb} now grouping the average AIM populations in both 

substrates, ∑a Na = NA and ∑b Nb = NB, for the ixed external 

potential v(r) = vA(r) + vB(r) due to the rigid molecular 

geometry. They combine into the overall population (row) 
vector in atomic resolution, NR = (NA, NB), with the system 
electronic energy being now regarded as its function: 

ER(NR) = ER({Nα}). This selection of electronic variables in 
turn determines the associated differential descriptors: the 
row vector of atomic chemical potentials, 

uR = ∂ER/∂NR = (uA, uB) = {uα = ∂E(NR)/∂Nα},             (41)

and the square hardness matrix in atomic resolution: 

hR = ∂2ER/∂NR
 ∂NR = ∂uR/∂N = {∂u /∂Nα ≡ hα,β = hβ, 

T ≡ 

[∂uα/∂Nβ]
T}.                   (42)

The latter ultimately determines the AIM softness 
descriptors:
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sR = (hR)−1 = ∂NR/∂uR = {sβ,α = ∂Nα/∂uβ}.             (43)

This softness matrix now transforms the resolution 
chemical-potential displacements  uR into the conjugate 
populational responses ∆NR: 

∆NR
 = ∆uR

 sR or ∆uR = ∆NR
 hR.                (44)

The second-order change in electronic energy due to 
populational displacements ∆NR of AIM then reads:

∆E(∆NR) = ∆NR
 uR,T + ½ ∆NR

 hR
 ∆NR,T ≡ ∆E(1)(∆NR) + ∆E(2)

(∆NR).                  (45)

Its quadratic term

∆E(2)(∆NR) = ½ ∑α ∑β ∆Nα hα,β ∆Nβ
T ≡ ∑α ∑β ∆E(2)(α, β),  

                 (46)

de ines in atomic resolution the energy paraboloid of the 
CT reactive system. It contains the (diagonal) intra-reactant 
surfaces (Figure 2), 

Eα
+(∆Nα) ≡ ∆E(2)(α,α) = ½ ∆Nα hα,α’ ∆Nα’

T = ½ ∑a∑a’  Na ha,a’ 

∆Na’, α = A, B;           (47a)

and the (off-diagonal) interaction contribution for α ≠ β

∆E(2)(α, β) + ∆E(2)(β, α) = ∑a∈α∑b∈β ∆Na ha,b ∆Nb.          (47b)

These canonical descriptors of AIM in R = AB can be 
also combined into the global reactant properties of the 
preceding section, and ultimately into those describing 
R as a whole. This is effected by weighting them into the 
average descriptors using the appropriate set of (atomic) 

FF indices:

GR = ∂NR/∂NR = {gα = ∂NR/∂Nα}.              (48)

The chain-rule transformation of derivatives provides 
the required combination rules:

μα = ∂E+(NR)/∂Nα = ∂ER(NR)/∂Nα = (∂NR/∂Nα) (∂ER/∂NR) 

≡ gα uR,T

 = ∑β (∂Nβ/∂Nα) (∂ER/∂Nβ) ≡ ∑β Gα,β uβ 
T or μR

+ = GR
 uR,T;  

                 (49)

ηα,β = ∂2E+(NR)/∂Nα ∂Nβ = = ∂2ER(NR)/∂Nα ∂Nβ 

 = (∂NR/∂Nα) (∂2ER/∂NR ∂NR) (∂NR/∂Nβ) = gα hR
 gβT

 = ∑γ∑δ (∂Nγ/∂Nα) (∂2ER/∂Nγ ∂Nδ) (∂Nδ/∂Nβ) ≡ ∑γ∑δ Gα,γ 

hγ,δ Gδ,α
T or 

ηR
+ = GR

 hR
 GR,T.                 (50)

Here, the combined matrix of internal FF descriptors of 
constituent atoms in both reactants reads

GA,A = ∂NA/∂NA, GA,B = ∂NB/∂NA

GB,A = ∂NA/∂NB, GB,B = ∂NB/∂NB               (51) 

and the external FF indices FR = ∂NR/∂NR group the 
populational responses of AIM to an in low or out low dNR 
of electrons to/from R as a whole: 

FR = ∂NR/∂NR = (FA
R = ∂NA/ NR, FB

R = ∂NB/∂NR).               (52)

The diagonal blocks in GR de ine the internal FF of AIM 
in each separate reactant (Figures 2,3):

GA,A = ∂NA/∂NA ≡ fA = {fa = ∂Na/∂NA} and

GB,B = ∂NB/∂NB ≡ fB = {fb = ∂Nb/∂NB}.               (53)

The resultant chemical potential and hardness of the 
whole reactive complex are given by the appropriate FF-
weighted, external averages of AIM descriptors: 

μR = ∂ER/∂NR = (∂NR/ NR) (∂ER/∂NR) = FR uR,T 

 = ∑α (∂Nα/∂NR) (∂ER/∂Nα) = ∑α FαR
 uαT,               (54)

ηR = ∂2ER/∂NR
2 = (∂NR/∂NR) (∂2ER/∂NR∂NR) (∂NR/∂NR) = 

FR hR FR,T
 

 = ∑α ∑β (∂Nα/∂NR) (∂2ER/∂Nα ∂Nβ) (∂Nβ/∂NR) = ∑α ∑β FαR 

hα,β FβR,T.                 (55) 

The atomic resolution of electronic structure offers 
chemically interesting details of molecular rearrangements 
in chemical reactions. They cover descriptors of both the 
“internal”, N-restricted process of the bond-formation 

Figure 2: Population activation (A+ B+)  (A*|B*) of the initially polarized (mutually-
closed) reactants {α+}, each exhibiting two internal (populational) degrees-of-
freedom, NA ={Na, Na’} and NB = {Nb, Nb’}. This displacement of the average populations 
in subsystems, NA = Na + Na’ and NB = Nb + Nb’, respectively, is effected in the externally 
open composite system (RA¦A+|B+¦RB), which involves a separate reservoir for each 
subsystem. In the isoelectronic CT process, when dNA + dNB = 0, the displaced 
substrate populations, dNA = NCT and dNB = −NCT, correspond to a common direction 
of the reactant internal FF {fα = ∂Nα/∂Nα}. This convention mutually orients both the 
AIM population spaces {Nα} of subsystems and their energy paraboloids {Eα

+(Nα) 
= ½∑iα∑jα dNi

α
 ηi,j

α
 dNj

α = ½ [hP
α

 (dNP
α)2 + hQ

α
 (dNQ

α)2]}, determined by the (diagonal) 
reactant blocks hα,α of the system overall hardness matrix in atomic resolution: hR

 = 
{hα,β}; here Pα and Qα respectively denote the “polarization” and “charge-transfer” (CT) 
normal modes of reactant α+, polarized in presence of its molecular partner.
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between reactants and the “external”, N-unrestricted 
effects, due to the intervention of an electronic reservoir. 
A reference to Figure 3 indeed suggests, that such an 
“opening” of the reactive system in the N-unrestricted CT 
should lower the required activation energy (see also [10-
12]).

When combining reactant paraboloids in ISM one 
ultimately encounters the problem of the unique mutual 
orientation of the AIM population spaces in both reactants. 
The natural choice is dictated by the requirement that 
the reactant FF vectors of Eq. (53) are collinear in the 
isoelectronic, N-restricted CT processes in DA systems. 
Indeed, electrons removed from the basic subsystem, most 
ef iciently along the fB direction, are subsequently donated 
to the acidic subsystem, most effectively along the fA vector. 
This convention is adopted in Figures 2,3. 

The N-unrestricted mechanism deviates from this 
collinearity (Figure 3). It can be realized in catalytic 
systems, where the surface active sites provide electron 
reservoirs for chemisorbed reactants. A reference to Figure 
3 also shows that this external opening of reactants may 
have a moderating effect on their activation in CT processes. 
The “softening” in luence of the system environment should 
thus constitute an important factor in the catalytic activity 
of heterogeneous systems. 

The Mulliken-type formulas [4,10,16,19],

uk ≈ − ½ [Ik + Ak] ≡ uk
(M), hk,k ≈ Ik − Ak ≡ hk,k

(M), hk,l ≈ ½[hk,k + 

hl,l] ≡ hk,l
(M),                 (56)

approximate the canonical AIM data of Eqs. (41) and (42). 

The off-diagonal hardnesses in hR = {hk,l = ∂2ER/∂Nk ∂Nl = 

∂ul/∂Nk}, can be then “scaled” geometrically,

hk,l ≈ hk,l
(M)

 Sk,l(Rk,l),                 (57)

where Sk,l stands for the overlap integral Sk,l = 〈sk|sl〉 between 
the representative s-type orbitals in the valence shells of 
atoms k and l. This representation separates the “property” 

descriptor hk,l
(M) from its geometrical factor Sk,l(Rk,l), 

depending on the inter-atomic distance Rk,l. It correctly 

reproduces the diagonal atomic descriptor, for k = l and 

hence Sk,k(Rk,k=0) = 1, and predicts the vanishing population 

coupling at large distances: Sk,l(Rk,l→∞) = 0. This estimate 

of the coupling hardness also satis ies the Maxwell cross-

differentiation identity: hk,l = hl,k
. Such inite-difference data 

can be ultimately transformed into the reactant descriptors 
of Eqs. (49) and (50). 

Alternatively, the interpolations of the valence-shell 
electron-repulsion integrals, familiar from the semi-
empirical LCAO MO theories, e.g., the Mataga-Nishimoto or 
Ohno formulas, can be used to approximate the hardness 
tensor in atomic resolution [10,27].

The inite-difference measures of the fragment chemical 

potentials {μα
(M) = (Iα + Aα)/2} and hardnesses {ηα

(M) = Iα 

− Aα} of mono-atomic reactants, A = k and B = l, generate 

the following in situ descriptors for the “positive” B→A CT, 
consistent with chemical functions of both substrates in 
reactive complex (Figure 1a):

μR
CT ≈ μA

(M) − μB
(M) = ½ [(IB +a AB) − (IA + AA)] 

 = ½ [(IB − AA) − (IA − AB)] = ½ [μCT
(+) − μCT

(−)] < 0,              (58) 

ηR
CT ≈ ηA,A

(M) +  B,B
(M) − 2ηA,B

(M) 

 = [(IB − AA) + (IA − AB)] (1 − SA,B) = [μCT
(+) + μCT

(−)] (1 − SA,B) 

> 0,                 (59)

NR
CT = − μR

CT/ηR
CT = [μCT

(−) − μCT
(+)]/{2[μCT

(+) + μCT
(−)] (1 − 

SA,B)} > 0,              (60) 

ECT = − ½ (μR
CT)2/ηR

CT = − ½ [μCT
(+) − μCT

(−)]2/{(1 − SA,B) [ CT
(+) 

+ μCT
(−)]}.             (61)

These expressions in terms of the biased chemical 
potentials for the reverse directions of CT indicate that an 
increasing overlap between reactants effectively softens 
the reactive system, thus facilitating a larger CT amount 
and greater stabilization energy.

Composite structures involving acid-base 
complexes

This populational perspective on the molecular 
electronic structure may also involve larger molecular 
fragments, e.g., the active parts of the acceptor and donor 

Figure 3: Moderating effect of the reactant external-opening in the composite 
system M+  (RA¦A+|B+¦RB) upon the activation energy of CT systems: Ea

restricted > 
Ea

unrestricted.



055

https://www.chemisgroup.us/journals/open-journal-of-chemistry

Citation: Nalewajski RF (2024) On population-space description of chemical reactivity. Open Journal of Chemistry 10(1): 047-057. 
DOI: https://dx.doi.org/10.17352/ojc.000039

substrates. Let us symbolically separate the geometrically 
accessible acidic (a) and basic (b) sites in reactants α ∈ (A, 
B) from their immaterial remainders: 

A = (aA¦…¦bA) ≡ (aA¦bA) and B = (aB¦…¦bB) ≡ (aB¦bB).

There are two alternative mutual arrangements of 
such subsystems in the TS complex: the complementary (c) 
structure Rc (Figure 4), in which the a-site of one reactant 
faces the b-site of the other substrate, and the regional-
HSAB, parallel (p) structure Rp = RHSAB, when mutually 
coordinating sites of both reactants are of the like-hardness 
character [28-30]:

B BA AR  and R R .HSAB
B BA A

a b a a
c pb a b b

 
  

 
   
      

  

                   (62)

The acidic (acceptor) site is relatively harder, i.e., less 
sensitive to an external perturbation, thus exhibiting lower 

values of the fragment FF index or the associated chemical-
softness descriptor, while the basic (donor) fragment is 
more polarizable, as indeed re lected by its higher response 
properties. The acidic part in X exerts an electron-accepting 
(stabilizing) in luence on the neighboring fragment of the 
other reactant Y, while the basic site of X produces an 
electron-donor (destabilizing) effect on the coordinated 
region of Y in its vicinity. The purely electrostatic, “ionic” 
interactions aAbB and aBbA then allow one to predict Rc 
as the expected preferred structure, while the “covalent” 
interactions aAaB and bBbA of the HSAB principle 
point towards Rp as the most stable system. Numerical 

calculations [28] con irm that complementary interactions 
of Figure 4, between the electron-rich (basic) fragment of 
one reactant and the electron-de icient (acidic) fragment 
of another substrate, indeed establish the most stable TS 
complex.

This relative stability of Rc re lects an electrostatic 
dominance in AB interactions: a (repulsive) basic 
fragment of one reactant indeed prefers to face an 
(attractive) acidic part of the reaction partner. The 
displacements in reactant external potentials due to 
the presence of the other substrate trigger the induced 
polarization lows {PX}, which restore the initially displaced 

intra-substrate equilibria of isolated species. The inter-
reactant CT displacements, after the hypothetical opening 
of the initially closed, polarized reactants, can be directly 
inferred from the Electronegativity Equalization (EE) 
principle [31,32]. The combined networks of P and CT 
displacements between the TS active sites, 

Figure 4: The elementary CT {bXaY} and polarizational (P) {aXbX} fl ows of electrons 
involving acidic A  (aA¦bA) and basic B   (aB¦bB) reactants in the complementary 
arrangement Rc of their acidic (a) and basic (b) sites in the reactive complex. These 
shifts are seen to produce the concerted (“circular”) pattern of electronic fl uxes in 
the fi nal, equilibrium reactive system Rc

* = (A*¦B*) = (aA¦bA¦aB¦bB), when all fragments 
are free to exchange electrons. 

then reveal different patterns of probability luxes in these 
two reactive complexes: the “concerted” pattern in Rc and 
the “disconcerted” low system in Rp [29,30]. They imply the 
least population displacements (activation) of both reactants 
in the former and more exaggerated charge displacements 
on the crucial aA and bB sites of the latter. Indeed, in Rc 
one observes the low-through behavior on all four active 
sites, with small net changes in electron populations on 
all these fragments, while the charge reconstruction in 
Rp can be regarded as a transfer of electrons from bB to 
aA through the remaining (intermediate) sites aB and bA. 
The concerted lows in Rc, which preclude an exaggerated 
charge depletion or accumulation, thus correspond to the 
least-displaced electron populations on all four reaction 
sites. This activation (promotion) perspective provides 
an additional physical explanation of the complementary 
preference. 

Compared to the isolated species A0 and B0, the primary 
coordination B→A in equilibrium DA system ultimately 
produces an electron-de icient basic substrate B+  ≡ B(+) and 
an excess electron population on its acidic partner A−δ ≡ A(−): 

B→A ≡ [A*¦B*] = A(−)B(+) ≡ M.              (63) 

Each of the “displaced” reactants then acquires partially 
“opposite” external character: A(−) site exhibits an increased 
tendency to donate electrons to its environment, while B(+) 

becomes an effective electron-acceptor site: aM = B(+) and bM 

= A(−). In external interactions between “monomers” {Mi}, 
the bonded A( ) part of one unit thus represents an accessible 
“basic” site for interactions with another AB complex, while 
the bonded B

(+) fragment stands for an available “acidic” site. 
Such secondary, “response” actions may in luence how such 
units (“monomers”) combine into larger, supra-molecular 
structures (“polymers”).
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In the spirit of the maximum complementarity [19], the 
preferred structure of the dimer Dc = M2 then involves the 
following pattern of “secondary” coordinations between 
bonded reactants of different monomers:

The implications of their discontinuity in the macroscopic 
ensemble and continuity in Mulliken’s internal ensemble 
approach have also been stressed. The FF convention for 
uniting the AIM population spaces of reactants in ISM has 
been revisited and model implications for lower activation 
energies in catalytic systems have been reiterated. We 
have also tackled the combination rules for the condensed 
CT-reactivity criteria in terms of the corresponding AIM 
descriptors.

Typical reactivity concepts have been invoked at both 
the P and CT reaction stages. A qualitative discussion of 
the DA complexes and composite systems consisting of 
AB monomers has also been given. In AB interactions a 
dominance of the molecular complementarity over the 
regional-HSAB behavior has been emphasized and its 
implications for predicted (AB)n structures have been 
explored. It has been stressed, that the “primary” B→A 
coordination in donor-acceptor complexes “reverses” 
chemical characters of the acidic and basic reactants, 
thus having a profound in luence on the stable patterns 
of the “secondary” associations of such AB monomers. 
In such “polymer” structures the internal and external 
coordinations enhance each other. 
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